
The Impact of Solar Panel Installation on Electricity

Consumption and Production∗

Natalia D’Agosti† and Facundo Danza‡

June 28, 2024

Abstract

Since 2010, the Uruguayan government has fostered the installation of solar panels
among households and firms to promote small-scale renewable electricity production.
Under this policy, agents with solar panels are allowed to feed any electricity surplus
into the grid. We study the economic and environmental consequences of this policy.
We collect a novel dataset on electricity extraction and injection into the grid at a
household/firm level for the whole country. First, we find that installing a solar panel
reduces the electricity extracted from the grid. Second, we find that it increases the
electricity injected into the grid. Third, we find that it reduces CO2 emissions by 0.15%
with respect to the baseline. Fourth, we find evidence of a rebound effect: electricity
consumption after the solar panel installation increases between 20% and 26%. Lastly,
we propose an alternative policy that allows agents to store their electricity surplus in
batteries instead of immediately injecting it into the grid. This policy would reduce
CO2 emissions by 2.7%, allowing electricity injection into the grid at night when fossil-
fuel facilities satisfy most of the electricity demand. We leverage household and firm-
level data to study the effect of a net-metering policy on electricity extraction and
injection, showing what countries can expect from implementing such a policy.
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1 Introduction

Energy production contributes substantially to greenhouse gas (GHG) emissions, which are

responsible for anthropogenic climate change. Consequently, numerous countries are tran-

sitioning toward cleaner energy production. Governments employ different policies to in-

centivize and accelerate this transition, including the promotion of microgeneration from

renewable resources.

Since 2010, the Uruguayan government has incentivized the installation of solar, wind,

and small hydro microgenerators among households and firms. More precisely, the govern-

ment initiated a net-metering policy: it allows agents with clean microgenerators to sell any

electricity surplus into the grid at the retail price.

In this paper, we study the economic and environmental consequences of this policy. We

collect a novel data set in which we observe the electricity extracted and injected into the

grid at a household/firm level for all the agents with a microgenerator. We focus exclusively

on solar panels, which are the main microgenerator. We observe the monthly electricity

extracted and injected into the grid at the agent level 12 months before and 12 months after

the solar panel installation. Additionally, we gather data on monthly CO2 emissions from

fossil-fuel-based facilities, hourly total electricity production by source, and hourly load.

We analyze several aspects of the net-metering policy. First, we study how the instal-

lation of solar panels affects the electricity extracted and injected into the grid. After the

installation of a solar panel, the electricity extracted from the grid is expected to decrease,

and the electricity injected into the grid is expected to increase. The magnitude of such

effects, however, is an empirical question. We use an event-study approach to quantify these

effects. Second, we calculate the effect of the policy on CO2 emissions and the “rebound

effect,” which is the potential increase in electricity consumption after the solar panel instal-

lation. Finally, we propose an alternative policy to be implemented: households and firms

would be allowed to store any surplus of electricity in batteries and, instead of injecting it

immediately into the grid, sell it when optimal. This optimal allocation would reduce CO2
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emissions and spot prices, benefiting other consumers and lessening the equity concerns of

the net-metering policy.

Our findings can be summarized as follows. First, we find that after the solar panel in-

stallation, the electricity extracted from the grid decreases, and the electricity injected into

the grid increases. More specifically, agents decrease their monthly electricity extraction

by 1,100 kWh, a 16% reduction from their average extraction, and increase the electricity

injected into the grid by 1,570 kWh. Both effects are constant over time. Additionally, we

consider heterogeneity by agent and analyze households and firms separately. We find that

both groups decrease (increase) the amount of electricity extracted from (injected into) the

grid. We find that firms and households decrease their electricity extracted by 16% and 11%

with respect to the total electricity extracted before installing the solar panels, respectively.

This difference could be explained by firms having a larger capacity and household consump-

tion patterns, as households tend to consume more electricity during the evening when solar

production is low (La Nauze, 2019).

In our context, the study-event approach has two caveats. Firstly, it fails to consider

that the timing of solar panel installation is endogenous (Beppler, Matisoff, & Oliver, 2023;

Boccard & Gautier, 2021): when the agent installs a solar panel, she might simultaneously

decide to increase her electricity consumption, or, on the contrary, she might start electricity-

conservation initiatives. This concern is unlikely to be present in our context. Agents must

navigate through various bureaucratic processes to get their solar panels installed and thus

lack control over the exact moment at which the solar panel starts working. Secondly, early

adopters may differ from future adopters, and hence future adoption of solar panels might

not necessarily yield the same results. We alleviate this concern by estimating the model

year by year. We find no statistical difference between the yearly estimators, and hence

conclude this form of selection is not prevalent. Since we cannot entirely rule out either of

these concerns, we read our estimates as an upper bound of the effect of the policy.

Second, we use our estimates to determine the policy impact on CO2 emissions and the
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rebound effect. To study the reduction in CO2 emissions, we focus exclusively on electricity

injection; our exercise is thus a lower bound on the total CO2 emission reduction.1 We analyze

two scenarios. Firstly, we assume that the electricity injected into the grid substitutes fossil-

fuel production exclusively. In this scenario, we find that CO2 emissions are reduced by

0.15% with respect to the baseline. Secondly, we assume that micro-generated electricity

substitutes fossil fuels proportionally to their share in total electricity production.2 In this

scenario, we find that CO2 emissions are reduced by 0.03% with respect to the baseline.

The rebound effect is the increase in electricity consumption after the solar panel installa-

tion. We find that after installing the solar panel, firms increase their electricity consumption

between 22% and 30%, and households increase their electricity consumption between 19%

and 22%.3 In theory, this increase in electricity consumption could be explained by agents

feeling richer, changing their consumption behavior, or facing a lower average electricity price

(Beppler et al., 2023; Boccard & Gautier, 2021). The welfare implications of the rebound

effect are ambiguous. On the one hand, the rebound effect reduces the effectiveness of solar

panels by decreasing the reduction of CO2 emissions, especially if the source that is used in

the margin is fossil-fuel-based. By a similar token, it could also increase the costs of genera-

tion. On the other hand, the increase in electricity consumption could have a positive impact

if agents begin an electrification process, such as replacing wood fireplaces with electric ones.

This can lead to reduced pollutants at the household and firm level (Beppler et al., 2023).

Both implications are likely to be present in our context.

Finally, we propose an alternative policy in which households and firms can inject elec-

tricity into the grid when optimal. Agents who install solar panels are richer than average.

It is usually assumed that electricity prices incorporate the cost of the grid (e.g., Feger et al.

(2022); Eid et al. (2014)). Since electricity prices are progressive in electricity consumption

1Unfortunately, we do not have a good measure of the distribution of the electricity-extraction reduction
within months and hours of the day, thus the exclusion.

2On average, fossil fuel production accounts for 8% of the total electricity production. Therefore, we
assume that the electricity injected into the grid substitutes, on average, 8% of the fossil fuel production.

3The range is given by various assumptions on the total peak hours of solar irradiance.
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and richer agents tend to consume more electricity, this implies that richer agents are now

contributing less to the grid’s costs. Furthermore, the marginal cost of solar electricity is

virtually zero. The net-metering policy, however, forces electricity providers to buy solar-

produced electricity at the retail price. In the long run, both of these factors may raise

electricity prices for all consumers. To lessen these concerns and improve the effectiveness

of the net-metering policy on CO2 emissions, we propose an alternative approach: house-

holds and firms could be allowed to store any surplus of electricity in batteries and, instead

of injecting it immediately into the grid, inject it when optimal. We find that this policy

would reduce CO2 emissions by 2.70% with respect to the baseline. Optimally, agents would

sell their solar production late in the evening, when CO2 emissions from fossil-fuel-based

electricity production and spot prices are high.

We contribute to the literature in several ways. First, we expand the literature on agents’

use of solar panels (Borenstein, 2017; Boccard & Gautier, 2021; Sexton et al., 2021; Feger

et al., 2022; Pretnar & Abajian, 2023; Beppler et al., 2023). Importantly, and unlike other

studies, we observe electricity extracted and injected into the grid directly - we do not infer

it. Furthermore, we use individual-level rather than aggregate data. On that front, our

paper is close to Feger et al. (2022). We expand it in numerous ways. First, we directly

observe the electricity extracted and injected into the grid, while Feger et al. (2022) have

to estimate it. Second, we use more recent data, covering the years 2010-2022 instead of

2008-2014. Given the significant reduction in solar panel prices, this factor is particularly

relevant. Lastly, our study focuses exclusively on net metering in contrast to Feger et al.

(2022), which studies five years of feed-in tariff policy and one year of net-metering policy.

Second, we contribute to the literature on equity problems associated with the net me-

tering policy, the miss-allocation of the electricity injected from microgenerators, and the

use of batteries in solar panels (Pretnar & Abajian, 2023; Sexton et al., 2021; Boampong

& Brown, 2020; Eid et al., 2014; Bollinger et al., 2024). More specifically, we explore an

alternative policy that could improve net metering, lessening some of the equity implications.
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We propose that households and firms install small batteries and store the electricity instead

of selling it immediately into the grid.

Third, we contribute to the extensive body of research on calculating the rebound effect

(Kattenberg et al., 2023; Beppler et al., 2023; Frondel et al., 2023; Qiu et al., 2019; La Nauze,

2019; Deng & Newton, 2017). Our results are in line with those found in the literature. For

example, Beppler et al. (2023) find a rebound effect of 28.5%, La Nauze (2019) finds an

increase in consumption of 23%, and Deng and Newton (2017) finds a rebound effect of 21%.

Lastly, we find a negative rebound effect, that is, an increase in electricity consumption,

contrary to Kattenberg et al. (2023), who find a decrease in electricity consumption after

the solar panel installation.

Finally, the discussion on microgenerators has been focused exclusively on the developed

world (Feger et al., 2022; De Groote & Verboven, 2019; Islam & Meade, 2013; Jeong, 2013).

We use data from another context not yet explored.

The remainder of this paper is organized as follows. Section 2 describes the Uruguayan

electricity market and the microgeneration policy. Section 3 describes the data. Section 4

presents our identification strategy. Section 5 shows our empirical results. Section 6 describes

the minimization problem to optimize the timing of electricity injected into the grid and its

results. Section 7 concludes.

2 Electricity Market

The Uruguayan electricity market is highly regulated. It has five primary electricity sources,

wind, hydro, biomass, solar, and fossil fuels, and two main institutions, ADME and UTE.4

The structure of the market is as follows. Electricity facilities sell their electricity to ADME,

the market operator, on a merit-order basis: from the facility with the lowest to the highest

marginal cost. Then UTE, the only electricity company, sells electricity to the consumers.

4ADME, comes from the Spanish acronym “Administración del Mercado Eléctrico del Uruguay.”, and
UTE comes from the Spanish acronym “Administración Nacional de Usinas y Trasmisiones Eléctricas.”
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Lastly, the electricity price is set by the Executive Power and has periodic adjustments, at

least once a year. Different pricing plans are offered to consumers. Figure 1 illustrates the

evolution of the prices of one of these plans, “Residential Simple.”

Figure 1: Price Example.
Notes: This figure shows the evolution of the “Residential Simple” electricity rate. Source: UTEi

(2022)

In the last two decades, Uruguay has fostered investments in renewable sources, wind,

solar, and biomass, on both large and small scale. On a large scale, it has done so through

public auctions, where firms submit a bid containing a power capacity and an electricity

price. Afterward, the government grants permission to install and produce renewable energy

to the best offers. This policy has resulted in 94% of the country’s electricity grid being

powered by renewable sources (MIEM, 2022; CAF, 2022).

On a small scale, Uruguay has implemented a net-metering policy. This policy allows

households and firms to produce and sell solar, wind, and hydro-based electricity. The policy

works as follows. The agent first consumes the renewable electricity that he produces. If,

at any given moment, her electricity production exceeds her electricity consumption, the

surplus is injected into the grid. The selling price is the retail price that the agent faces, and
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the electricity injected into the grid is discounted in her current month’s bill. In May 2017,

the policy changed slightly, stipulating that the yearly amount of electricity sold must not

exceed the amount of electricity consumed (MIEM, 12/17).5 Figure 2 shows the evolution

of solar panel installation by month.

Figure 2: Solar Panels.
Notes: This figure shows the new solar microgenerators installed by month in gray. Source: UTEi

(2022)

3 Data and Descriptive Statistics

We use administrative data at the household/firm level to analyze how the electricity ex-

tracted and injected into the grid changes after installing a solar panel under the net-metering

policy. The data was provided by UTE. It includes, for every household and firm that has

installed a solar panel in the county, their monthly electricity consumption from the grid the

12 months before the solar panel installation and electricity extracted and injected into the

5In practice, there are 139 agents whose annual electricity injected surpassed the annual electricity ex-
tracted at any given year. Of those, 87 are firms and 52 are households. We repeat our main analyses,
eliminating these 139 agents and the results do not change. Table A.9 shows the results in the Appendix.
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grid 12 months after the solar panel installation.

In total, the dataset contains 1,275 agents: 904 firms and 371 households. Figure 3

shows the location of solar panels color-coded by type of agent. The size of each dot reflects

the capacity installed of the solar panel in kW, for both the whole country and the capital

city, Montevideo. Although most microgenerators are concentrated in Montevideo, many

are scattered throughout the country. Furthermore, the number of firms adopting solar mi-

crogenerators is higher than the number of households, with firms exhibiting higher installed

capacity on average. Firms have a capacity installed of 37.64 kWh and households have a

capacity installed of 13.5 kWh. In 2020, solar capacity accounted for 6% of the total installed

electricity capacity, with microgeneration being 12% of such a capacity (MIEM, 2022).

We also construct CO2 emission from fossil-fuel-based electricity generation, collecting

monthly data on gas oil, fuel oil, and natural gas consumption from UTEi (2022) and com-

bining it with the CO2 emission factor derived from the IPCC (2006).6

The descriptive statistics are presented in Table 1. As shown, the average amount of elec-

tricity extracted from the grid is 6,740 kWh before installing the solar panels and decreases

to 5,388 kWh afterward; the amount of electricity injected into the grid is, on average, 1,546

kWh; and firms exhibit higher extraction and injection levels compared to households.

6The data is constructed from 1:00 AM to 1:00 AM of the following month. For example, from midnight
October 1 until midnight November 1.
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(a) Location of Microgenerators

(b) Capital city - Location of Microgenerators

Figure 3: Microgeneratos location.
Notes: Panel (a) shows where the different solar microgenerators are distributed across the coun-
try. Panel (b) shows where the different solar microgenerators are distributed in the capital city,
Montevideo. Color-coded by residential or commercial customers. The capacity installed, “Power,”
is in kW. Source: UTEi (2022)
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Table 1: Descriptive Statistics

Mean S.D Min. Max
Before

Extractions (kWh) 6,740.13 14,274.64 0.08 25,6032.2
Firms 9,134.80 16,354.92 0.08 25,6032.2
HH 995.48 2,042.16 0.43 33,108.8

After
Extractions (kWh) 5,388.75 13,795.12 0.08 297,253.2
Firms 7,144.57 15,854.25 0.08 297,253.2
HH 810.63 1,463.37 2 27,704.48

Injections (kWh) 1,545.98 3,272.36 0 136,844.1
Firms 2,139.35 3,877.2 0 136,844.1
HH 448.41 925.15 0 24,405.6

Household 0.29 0 1

Firms 0.71 0 1
N 24,386 24,386 24,386 24,386

Notes: Data provided by UTE. Extraction before installing the solar panel
is the same as total consumption. After installing the solar panel, while
extractions show the amount of electricity taken from the grid, injections
show the average of electricity sold into the grid. HH is short for households.
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4 Methodology

After installing a solar panel, agents are expecting to decrease the electricity extracted from

the grid and increase the electricity injected into the grid. Figure 4 illustrates the average

changes in electricity extracted and injected into the grid before and after installing a solar

panel.

Figure 4: Electricity extracted and injected into the grid.
Notes: This figure shows the average amount of electricity extracted and injected into the grid 12 months
before and after the solar panel installation. Source: UTEi (2022)

4.1 Econometric Specification

To quantify the changes in the electricity extracted and injected into the grid after installing

a solar panel, we run regression (1):

yist = αi + βDist + δt + ϵist (1)

where yist is the electricity extracted or injected into the grid for agent i in state s at month

t; Dist is the treatment, a variable equal one if the agent i installed the solar panel at time
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t; αi is the agent fixed effect, where any time-invariant household/firm characteristics are

captured; δt is the time fixed effect, e.g. month, month + year or month ∗ year, capturing

weather and seasonal changes; and ϵist is the error term, which is clustered at state level.

We also study the dynamic effect of solar panel installation estimating equation (2):

yist = αi +
−2∑

τ=−12

ρτDisτ +
12∑
τ=1

λτDisτ + δt + ϵist (2)

where the first summation shows the anticipatory effects of installing a solar panel; the

second summation quantifies the post-treatment effects of the solar panel installation; and

the remainder is as specified in regression (1). Formally, the installation occurs at time τ =

0. Since we do not observe that month, all the estimations are compared to τ = −1.

A potential limitation in our specification is that solar installation and adoption time

are endogenous. If the agent installs a solar panel with the intention of increasing their

electricity consumption, our results are upwardly biased (Beppler et al., 2023). Conversely,

if the agent simultaneously increases electricity conservation initiatives when installing a

solar panel, then the estimator is downwardly biased. Previous research has found more

evidence supporting the former, and thus, we interpret these estimations as an upper bound

of the effect. Regardless, we expect that the extent of the bias is low. In our case, the agent

has little control over the installation timing. In order to install a solar panel, she has to

upload paperwork to the electricity company to be approved, then the electricity company

has to send a technician to approve the installation, and finally, the solar panel is installed.

Another concern could be that early adopters have larger systems and are able to produce

more electricity than late adopters. We explore this concern by comparing the extraction

and the net effect estimations year by year. We find that there is no statistically significant

difference between yearly estimators. We present these results in Figure A.1 and Table A.2

in the appendix.
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5 Results

In this section, we show our main results. First, we discuss the effect of solar panel installation

on the electricity extracted and injected into the grid for all the agents, firms, and households

separately. The net effect result, which is defined as the difference between the electricity

extracted minus the electricity injected, is presented in Section A.4 in the appendix. Second,

we show the monetary value for consumers of this policy. Third, we show the CO2 emissions

reduction due to the policy. Lastly, we calculate the rebound effect.

5.1 Electricity Extracted from the Grid

Table 2 presents the event study results using electricity extracted from the grid as the

dependent variable. After installing a solar panel, the agent’s electricity extracted from the

grid decreases by 1,100 kWh, on average. This decline represents a 16% reduction in the

average electricity taken from the grid before installing the solar panel for the entire period.7

This result is robust to different fixed-effect specifications.

Table 2: Electricity taken from the grid

Electricity taken from the grid (kWh)
(1) (2) (3)

Solar panel installation -1099.2*** -1085.68*** -1091.55***
(71.41) (146.19) (142.94)

ID F.E Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y
N 24,386 24,386 24,386

This table shows the effect of installing a solar panel on the electricity
extracted from the grid, using different time-fixed effects. Column (1) uses
ID + month fixed effects; column (2) uses ID + month +year fixed effects;
finally, column (3) uses ID + month ∗ year. Standard errors are clustered
at the state level. Significance levels: ***0.01 **0.05 *0.1.

Figure 5 presents the event study coefficients using ID + month fixed effects (column

7See Table 1.
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Figure 5: Event study plot - Extraction from the grid.
Notes: This figure shows the event study plot using 12 lags/leads before/after the solar panel in-

stallation, controlling for ID + month fixed effects.

(1)). All the results are compared with the month before installing the solar panel (-1).

Figure 5 shows that the reduction in the electricity extracted remains constant over time.

5.1.1 Heterogeneity by Agent

In this section, we analyze how the electricity extracted from the grid changes depending on

the type of agent, firm or household. The results are presented in Table 3. For firms, the

installation of solar panels decreases the electricity extracted from the grid between 1,427

and 1,491 kWh. This represents a 16% reduction on average extraction for the firms. In

addition, results are robust to different specifications. For households, however, the effect is

smaller and varies with the specification. Using specification (1), the reduction of electricity

extracted represents 12% of the average electricity extracted for the households.
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Table 3: Electricity taken from the grid by type of agent: household or firm

Panel (a): Electricity taken from the grid - Firms
(1) (2) (3)

Solar panel installation -1491.19*** -1427.34*** -1439.81***
(97.51) (204.10) (200.91)

ID Fixed Effects Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y
N 17,409 17,409 17,409

Panel (b): Electricity taken from the grid - Households
(1) (2) (3)

Solar panel installation -108.87*** -191.25** -193.71**
(25.87) (89.55) (89.523)

ID Fixed Effects Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y
N 6,977 6,977 6,977

This table shows the effect of installing a solar panel on the electricity taken from the grid,
using different sets of time fixed effects and different types of agents. Panel(a) uses only
firms, whereas Panel (b) uses only households. Column (1) uses ID + month fixed effects;
column (2) uses ID + month +year fixed effects; finally, column (3) uses ID + month∗year.
Standard errors are clustered at state level. Significance levels: ***0.01 **0.05 *0.1.
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5.2 Electricity Injected into the Grid

Table 4 presents the event study results using electricity injected into the grid as the depen-

dent variable. After installing the solar panel, the agent’s electricity injected into the grid

increases by 1,570 kWh on average (column (1)). The result changes slightly depending on

the time-fixed effects used.

Table 4: Electricity injected into the grid

Electricity injected into the grid
(1) (2) (3)

Solar panel installation 1569.75*** 1708.83*** 1697.76***
(110.65) (128.93) (122.93)

ID Fixed Effects Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y
N 18,964 18,964 18,964

This table shows the effect of installing a solar panel on the electricity
injected into the grid, using different time-fixed effects. Column (1) uses
ID + month fixed effects; column (2) uses ID + month + year fixed effects;
finally, column (3) uses ID + month∗year. Standard errors are clustered at
the state level. Significance levels: ***0.01 **0.05 *0.1. 4 The difference
in N comes from having more missing values in the injections observations
than in the extractions observations.

Figure 6 plots the event study coefficients using ID + month fixed effects. All the results

are compared with the month before installing the solar panel (-1). Figure 6 shows the

increase in electricity injected in the grid remains constant over time.

5.2.1 Heterogeneity by Agent

In this section, we explore how the electricity injected into the grid changes depending on

the type of agent, firm or household. The results are presented in Table 5. For firms, the

installation of solar panels increases the electricity injected into the grid between 2,136 and

2,2286 kWh. For households, the electricity injected grid increases between 455 and 496

kWh.
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Table 5: Electricity injected into the grid by type of agent: household or firm

Panel (a): Electricity injected into the grid - Firms
(1) (2) (3)

Solar panel installation 2135.82*** 2286.01*** 2257.25***
(109.20) (137.41) (136.88)

ID Fixed Effects Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y
N 13,033 13,033 13,033

Panel (b): Electricity injected into the grid - Households
(1) (2) (3)

Solar panel installation 455.28*** 495.76*** 491.71***
(33.39) (42.62) (43.02)

ID Fixed Effects Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y
N 5,931 5,931 5,931

This table shows the effect of installing a solar panel on the electricity injected into the grid,
using different sets of time fixed effects. Column (1) uses ID + month fixed effects; column
(2) uses ID + month +year fixed effects; finally, column (3) uses ID + month∗year. Standard
errors are clustered at state level. Significance levels: ***0.01 **0.05 *0.1.
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Figure 6: Event study plot - Injection into the grid.
Notes: This figure shows the event study plot using 12 leads/lags before/after the solar panel in-

stallation, controlling for ID + month fixed effects.

In the previous sections, we show that firms and households increase the amount of elec-

tricity injected into the grid. Furthermore, the decrease in electricity extracted from the grid

is more pronounced for firms than households with respect to their baseline. This difference

could be explained by differences in electricity usage patterns. For example, households

consume more electricity at night, leading to relatively stable extraction patterns, while

firms consume more electricity during daylight hours, resulting in a higher reduction in the

extraction level (La Nauze, 2019).

5.3 Policy Change - 2017

Since May 2017, the legislation mandates that the yearly amount of electricity injected into

the grid must be less or equal to the amount of electricity consumed (MIEM, 12/17). We

explore the effect of this policy change in more detail in this section. More precisely, we

construct a variable equal to 1 if the installation date is after May 2017 and 0 otherwise. We
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then interact this variable with the treatment.

The results are presented in Table A.5 in the appendix. We find there is no difference

in the electricity extracted from the grid between agents that installed a solar panel before

and after the change in legislation. Unfortunately, we cannot perform the same estimation

for the electricity injected into the grid due to a lack of data.

5.4 Robustness Checks

In this section, we present a series of robustness checks to further validate our main analysis.

First, we study the effect of clustering our errors at the agent level rather than at the state

level. The results are unchanged and can be found in Table A.8 in the Appendix. Second,

we exclude the agents who, in any given year, injected more electricity than they extracted,

due to the discussion in Section 5.3. The results barely change and are presented in Table

A.9 in the Appendix. Third, we trim our data, excluding the 5% with the highest and lowest

electricity extraction. The results do not change substantially and can be found in Table

A.10 in the Appendix. Lastly, we estimate our model using the Sun and Abraham (2021)

approach. The results do not change and are presented in Table A.11 in the Appendix.

5.5 Value to Consumers

In this section, we quantify the effect of the policy on cost savings. In order to do so, we

need an assumption on the electricity pricing plan that firms and households are enrolled in,

which we do not observe. For firms, we use the “middle consumers” rate, which divides the

day into three tiers: peak, off-peak, and plain rate. For households, we use the “intelligent

rate,” which also consists of three tiers: peak, off-peak, and plain. Furthermore, we take the

weighted average of these rates. For more information about the calculation, please refer to

Appendix Section A.8.

We find that at 2017 prices (Xavier, 2022), each firm saves between 268 and 450 USD

per month, considering the injection and the extraction-reduction-plus-injection effect esti-
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mation, respectively. In addition, each household saves between 54 and 68 USD per month,

considering the injection and the extraction-reduction-plus-injection estimation, respectively.

In terms of the time to recoup the initial investment, we find that, for a solar panel with a

capacity of 40 kW for firms and 15 kW for households, firms need at least 6 years to break

even and households need at least 15 years.8

5.6 Reduction in CO2 Emissions

We use our estimates to compute the effect of installing solar panels on CO2 emissions. We

need a few assumptions for this computation. First, total CO2 emissions due to electricity

production depend on the sources used to produce such electricity. One way to reflect that is

by constructing hourly CO2 factors, which would establish how much CO2 would be emitted

per extra unit of electricity at that hour. We construct such factors for the days and months

of our study using total CO2 emissions by fossil-fuel-based facilities in our study period;

please check Appendix A.7 for further details on how the emission factor was constructed.

Second, we only observe electricity extracted and injected into the grid monthly. Thus, we

need an assumption on the hourly distribution within a month. We assume the electricity

injected into the grid follows the hourly distribution of the large solar electricity production,

which we observe. Unfortunately, we cannot make such an exercise for electricity extracted

from the grid, and thus we focus exclusively on electricity injected in our analysis.

We study two different scenarios. First, we assume that the electricity injected into the

grid exclusively substitutes fossil fuel electricity production. We find that the solar panel

installation reduces CO2 by 0.15% with respect to the baseline. Second, we assume that

solar panels substitute fossil fuel production proportionally to their share of total electricity

production. We find that the solar panel installation reduces CO2 by 0.03% with respect to

the baseline.

8The cost of a solar panel of 40 kW in the Uruguayan market is of 36,500 USD considering the panel and
installation.
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5.7 Rebound effect

Solar panel installation can induce a “rebound effect,” an increase in the electricity con-

sumption after the installation. This increase could be explained by agents feeling richer,

electricity being cheaper on average, or changes in their consumption behavior (Beppler et

al., 2023; Boccard & Gautier, 2021). Conversely, a solar panel installation can lead to an

increase in energy conservation and, thus, a decrease in electricity consumption after the

installation. For example, Rai and McAndrews (2012) find that solar panel installations

were associated with increased environmental and electricity use awareness in Central and

Northern Texas.

Unfortunately, we do not observe electricity consumption post-solar panel installation

directly. We can, however, study the average change in consumption by using the solar

panel capacity to estimate production. More specifically, we write:

Consumptionbefore solar panel = Extractionbefore solar panel (3)

Consumptionafter solar panel = Production− Injection+ Extractionasp (4)

Casp − Cbsp = (Production− Injection) +

(Extractionasp − Extractionbsp)

(5)

Consumption before installing the solar panel is the same as extraction before installing

the solar panel (hereafter bsp), hence Equation (3). After installing the solar panel (hereafter

asp), the consumption of electricity equals the production of the solar panel minus the

electricity injected plus the electricity extracted, hence Equation 4. We then subtract (4)

and (3) to reach (5).

We can find the average rebound effect by averaging Equation 5 over all agents, as in

Equation 6:9

9We use the sample means because the capacity installed of the solar panel is in a different database,
which has an additional 13 agents.
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12∑
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[
12∑
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Given that
∑−1

−12 Pit = 0 and
∑−1

−12 Iit = 0, we write Equation (7):
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[
12∑
t=1
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−1∑
−12

Cit

]
=

1

N
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[
12∑
t=1

Pit

]

− 1
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i=1

[
12∑
t=1

Iit

]

+
1

N

N∑
i=1

[
12∑
t=1

Eit −
−1∑
−12

Eit

] (7)

where Cit is the electricity consumed for agent i at time t; Pit is the electricity produced

from agent i at time t; Eit is the electricity extracted from the grid for agent i at time t; and

Iit is the electricity injected into the grid for agent i at time t.

From our estimation, we recover
1

N

∑N
i=1

[∑12
t=1Eit −

∑−1
−12Eit

]
and

1

N

∑N
i=1

[∑12
t=1 Iit −

∑−1
−12 Iit

]
(Table 2 and Table 4, respectively). We also observed∑−1

t=−12Cit in our data, which is 6740.13 kWh.10 Finally, we use the capacity of the solar

panels to infer electricity production.

electricity production depends on the solar panel capacity and peak sunlight hours (Solar,

AE solar). The average solar panel capacity is 29.56 kW, with 37.64 kW for firms and 13.45

kW for households. Uruguay has between 4.52 and 5.0 hours of sunlight per day (Global

Solar Atlas); therefore, the production of the solar panel ranges between 5,100 and 5,646

10Before the solar panel installation, extraction from the grid and consumption is the same.
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Table 6: Electricity production from solar panels

Monthly Production
Total Firms Households

Cap. installed (kW) 29.56 37.64 13.45
Sunlight = 4.52 hours 4008 5104 1824

Sunlight = 5 hours 4434 5646 2018

Notes: This table shows the electricity production from so-
lar panels given their installed capacity and the average peak
hours of sunlight. Differentiating between firms and house-
holds.

Table 7: Rebound effect

Rebound Effect (kW)
Total Firms Households

Sunlight = 4.52 hours 1338 (20%) 1477 (22%) 1260 (19%)

Sunlight = 5.0 hours 1764 (26%) 2019 (30%) 1454 (22%)

Notes: This table shows the average rebound effect after installing a solar
panel, which depends on the solar panel installed capacity and the average
peak hours of sunlight. Differentiating between firms and households.

kWh for firms, and between 1,824 and 2,018 kWh for households (Table 6).

We present the average rebound effect in Table 7. After installing solar panels, electricity

consumption increases on average between 20% and 26%. The calculation differs by agent,

while firms increase their rebound effect between 22% and 30%, households increase their

electricity consumption between 19% and 22%. For an example of how we calculate this

number, please see Section A.1 in the Appendix. Figure 7 shows the lower and upper bounds

of the rebound effect by month for all agents. The estimations used for the calculation are

presented in Table A.1 in the Appendix. The result is in line with the literature. For

example, after installing a solar panel Beppler et al. (2023), La Nauze (2019), and Deng and

Newton (2017) find a rebound effect of 28.5%, 23%, and 21% respectively.

The “rebound effect” could be explained by several factors, such as agents feeling richer,

electricity being cheaper on average, and changes in their consumption behavior (Beppler

et al., 2023; Boccard & Gautier, 2021). Each one of these factors is present in our case.
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Figure 7: Rebound effect.
Notes: This figure shows the lower and upper bound of the rebound effect, for each month after

installing a solar panel.

First, we find that after installing the solar panel, firms and households save between 268-

450 USD and 54-68 USD per month at 2017 prices, respectively. Thus, agents could feel

richer and consume more electricity. Second, agents buy and sell the electricity at the

retail price; hence, the opportunity cost of electricity consumption does not change -there

is no economic incentive to increase consumption. Nevertheless, Ito (2014) shows that in

electricity markets, agents react to the average price. The increase in electricity consumption

could thus be explained by the reduction in the average electricity price. Lastly, agents may

change their consumption behavior and use more electricity during solar hours or change

their charging patterns and increase electrification (e.g., changing from a gas heater to an

electric heater).

This increase in electricity consumption has an ambiguous effect. On the one hand,

the rebound effect reduces the effectiveness of solar panels, i.e., it reduces the environmental

benefits of reducing fossil-fuel-based electricity production. In addition, it could also increase

other costs of electricity generation and imply a leakage effect from this policy. On the other

hand, an increase in electricity consumption can be beneficial if the agent initiates a process
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of electrification, e.g., by changing the wood fireplace to an electric one. This shift would

reduce the location and potentially harmful effects of other pollutants (Beppler et al., 2023).

6 Batteries and Emissions

The reduction of CO2 emissions could be further improved if households and firms were

allowed (and incentivized) to improve the timing of electricity injection into the grid. This

could be achieved by allowing agents to have batteries. In this section, we explore the

potential benefits of such a policy.

We want to find an optimal way to minimize CO2 emissions given agents’ electricity

production. To do so, we complement our main dataset with another one containing hourly

electricity production by source and electricity demand. We focus on the period from Novem-

ber 2018 to August 2022.11

The daily solution to this optimization can be expressed as a linear programming problem,

namely Equation (8):

min
qith,Fht

23∑
h=0

αCO2
th × Fth

s.t
23∑
h=0

qith ≤ Qi, ∀i

RDth ≤ Fth +
∑
i

qith, ∀h

(8)

where qith is the electricity injected into the grid from solar panels for agent i on day t at

hour h; Fth is the fossil-fuel-based electricity production at day t and hour h; αCO2
th is the

CO2-emissions-factor of producing a unit of electricity on the day t at hour h from fossil-

fuel-based facilities;12 Qi is the total electricity production of agent i within a day; and RDth

11In this period, we observe electricity injection for all agents that installed a solar panel within the
12-month window.

12Please see Appendix A.7 for further details on how we construct such factors.
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is the residual demand at time t and hour h.13 The first restriction imposes that the total

injection into the grid by agent i is equal to its total daily injection. The second restriction

ensures that fossil-fueled-based production plus the microgeneration production is at least

as much as the (residual) demand. We detail the calculations of the model in Section A.2 in

the Appendix.

Intuitively, we would like agents to inject their solar-produced electricity when CO2

emissions are at their highest, which occurs when fossil-fuel-based facilities are producing.

Since currently, firms and households only inject solar electricity when they generate it, the

only possible way to substitute fossil fuel production with solar production is through the

use of batteries. Figure 8 Panel (a) shows how different sources behave hourly, and Panel

(b) shows large solar and microgenerator production by the hour.

6.1 Results

The linear programming problem finds the optimal allocation of electricity injections into

the grid. This allows us to recover the potential (social) benefits of offering batteries to

households and firms.

We solve the model using both the CO2 emission factors and the spot price.14 Figure 9

presents the results. Each dot represents the number of times the model chooses that hour as

the optimal time to inject the microgenerator-electricity into the grid for the whole period.

Using the CO2 emission factors, we find that the optimal time for injecting electricity into

the grid is between 8 PM (21 hrs) and 12 PM (24 hrs). This would imply a 2.70% reduction

in CO2 with respect to the baseline. Using the spot prices, we find that the optimal time to

inject microgenerator production is after 6 PM (18 hrs).

13The residual demand is calculated as the hourly demand minus the production of wind, large solar,
hydro, biomass, and exports plus imports.

14Please check Appendix A.7 for further details on how we construct such factors. The spot price was
provided by UTE and consists of the marginal cost of increasing the demand for one unit of electricity.
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(a) Electricity production by source

(b) Electricity production by large solar and microgenerators

Figure 8: Electricity source.
Notes: Panel (a) shows how the different electricity sources behave hourly, from November 2018

until August 2022. The black line is the consumption (load), the blue line is the hydro dispatch, the

green line is the wind dispatch, the red line is the fossil fuels dispatch, the grey line is the biomass

dispatch, the orange line is the solar dispatch, finally the purple line is the solar injection from

microgenerators. Panel (b) shows how the large solar and the microgenerator production behaves.

Source: (UTEi, 2022)
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(a) Model solution using CO2

(b) Model solution using spot prices

Figure 9: Minimization solution.
Notes: Panel (a) shows the model solution minimizing the CO2 emissions. Panel (b) shows how the mini-

mization solution using spot prices. We change the 12 PM to 24 hrs for display.
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7 Conclusion

We use granular data on electricity injected and extracted into the grid to study Uruguay’s

net-metering policy. First, we run an event study to analyze the effect of installing a solar

panel on the electricity extracted and injected into the grid. Second, we use our estimates to

determine the policy’s effect on CO2 emissions and the rebound effect. Finally, we perform

a minimization problem that illustrates the benefits of installing batteries to store solar-

produced electricity instead of selling it immediately into the grid.

On the one hand, the policy has clear positive effects. First, agents extract less electricity

from the grid. After installing the solar panel, the electricity extracted from the grid decreases

by 1,100 kWh on average, a 16% reduction in the average electricity extracted from the grid.

This effect is constant over time. Second, the agent is now injecting clean energy into the

grid, which is then consumed by other agents. After installing the solar panel, the electricity

injected into the grid increases by 1,570 kWh on average. This effect is constant over time.

Second, the policy has a positive impact on CO2 emissions. We find that the policy reduces

CO2 emissions by 0.15% with respect to the baseline. Third, we use the solar panel’s capacity

to study the rebound effect. We find that, after installing a solar panel, agents increase their

electricity consumption between 20% and 26%, on average.

On the other hand, the policy has important equity implications. Electricity prices embed

the cost of the grid (Feger et al. (2022)). Since agents who install solar panels are richer than

average, prices are progressive in electricity consumption, and richer agents tend to consume

more electricity, this implies that richer agents are now contributing less to the grid costs.

Moreover, the marginal cost of solar electricity is almost zero, but the net-metering policy

implies that it is purchased by the electric company at the retail price. In the long run,

these may increase electricity prices. To alleviate these concerns and to further improve the

reduction of CO2 emissions, we propose an alternative policy: rather than immediately selling

surplus electricity into the grid, households and firms could store it in batteries and sell it at

another time. Installing a battery has some positive spillovers to the rest of the consumers
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by decreasing CO2 emissions and spot prices. To analyze this, we solve a minimization

linear problem, which reduces CO2 emissions in a 2.7%, a 2.55% improvement with respect

to 0.15%.

To translate our results to dollars, we find that, after installing a solar panel, firms save

between 268 and 450 USD, and households save between 54 and 68 USD in 2017 prices. In

2017, the maximum cost of a solar panel with a battery in the Uruguayan local market was

717 USD for 12V and 100ha and 1132 USD for 12V 200ha (Mercado Libre). Thus, the agent

could completely eliminate the injection of electricity into the grid by buying a battery, and

the cost of the battery would pay for itself in a few months, or the agent could sell the

electricity to the grid when optimal, as studied in our linear model solution.

Future studies could explore the mechanism explaining our rebound effect. Moreover, our

work does not include solar panels with batteries off-grid (i.e., not connected to the grid),

which could benefit households without the cost of expanding the grid—another interesting

topic for future work.
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A Appendix

A.1 Rebound Effect - Further Details

In this section, we display an example of how we calculate the rebound effect.

12∑
1

Consumptioni

N
− 6740.13 =4008− 1, 110− 1, 570 if hours of sunlight = 4.52

12∑
1

Consumptioni

N
− 6740.13 = 1338

(9)

12∑
1

Consumptioni

N
− 6740.13 =4434− 1, 110− 1, 570 if hours of sunlight = 5

12∑
1

Consumptioni

N
− 6740.13 = 1764

(10)

Table A.1: Estimations used for the rebound calculation

Extraction reduction Injection
Month +1 -988.72 1608.69
Month +2 -938.55 1571.57
Month +3 -1082.51 1843.01
Month +4 -1117.69 1630.63
Month +5 -782.62 1521.61
Month +6 -808.50 1581.30
Month +7 -716.73 1456.12
Month +8 -977.08 1489.62
Month +9 -825.01 1424.70
Month +10 -966.85 1447.13
Month +11 -996.14 1469.76
Month +12 -1152.42 1566.19

This table shows the estimations used to calculate the
rebound effect. These estimations are the same as the
ones presented in Figure 5 and Figure 6, where ID and
month-fixed effects are used. Month +1, shows the es-
timations of the extraction and injection after the first
month of installing the solar panel.
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A.2 Linear Model - Further Details

In this section, we explain our linear minimization problem in further detail. Recall:

min
qith,tth

∑
i

T∑
t=1

23∑
h=0

COth
2 (qith) +

T∑
t=1

23∑
h=0

COth
2 (tth)

s.t

T∑
t=1

23∑
h=0

qith ≥ Qi,∀i

Tht + qth ≥ Residual Demand

(11)

where qith is the electricity injected into the grid from the microgenerator i, and tth is the

thermal production in a certain hour and day.

We can re-write the problem in matrix form. More precisely, the objective function is a

matrix48x1 times a matrix1x48

[
D0 D1 D2 · · · D23 0 0 0 · · · 0

]
×



t0

t1

t2
...

t23∑
i q

i
0∑

i q
i
1∑

i q
i
2

...∑
i q

i
23



The first constraint takes the value equal one on their diagonal,

(i.e. a(1,1), a(1,24), b(2,2), b(2,25), c(3,3), c(2,26), ..., x(24,24), and x(24,48))
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

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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WhereDk is either the CO2 emission coefficient or the spot price for hour k = (0, 1, 2, · · · , 23).

rdk is the residual demand for hour k. The residual demand is found as: residual demand

= demand - wind - hydro - solar - biomass.
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A.3 Selection Bias

This section tries to lessen the selection bias concern that the early adopters are different

from the late adopters. We compare the yearly estimations of the electricity extracted and

the net effect (electricity extracted − injected).

First, we multiply the treatment variable for a year dummy, a variable equal to one for

a specific year, and zero otherwise; then we run Regression (1). Results are shown in Figure

A.1. For the extraction estimations (panel a), all the estimations are similar. For the net

effect, the only different year is 2017.

To explore this further, we compare the extraction estimation of 2013 versus 2014 and

2018. Results are in Table A.2. We are not able to reject the hypothesis that the extraction

estimation of the year 2013 is not equal to the estimation of the years 2014 and 2018.

Table A.2: Time Variation

P-values
Model 1 Model 2 Model 3

β2013 − β2014 = 0 0.145 0.197 0.201

β2013 − β2018 = 0 0.218 0.296 0.526
ID Fixed Effects Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y
N 24,386 24,386 24,386

This table shows the difference between the extraction esti-
mation of the year 2013 versus 2014 and 2018, using dif-
ferent especifications. Column (1) uses ID + month fixed
effects; column (2) uses ID + month +year fixed effects;
finally, column (3) uses ID + month ∗ year. Standard er-
rors are clustered at state level. Significance levels: ***0.01
**0.05 *0.1.
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(a) Extraction estimations
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(b) Net effect estimations

Figure A.1: Yearly estimations.
Notes: Panel (a) shows the yearly estimations of extractions. Panel (b) shows the yearly estimations

using the net effect. Data before 2017 have many missing values. The regression uses ID and month

fixed effects.
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A.4 Net Effect

Table A.3 shows the net effect of installing a solar panel (i.e., extractions− injections). After

installing a solar panel, the net effect decreases by 2,565 kWh.

Table A.3: Net effect

Net effect (extractions − injections (kWh))
(1) (2) (3)

Solar panel installation -2564.97*** -2839.05*** -2830.68***
(249.20) (363.62) (354.73)

ID F.E Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y
N 18,964 18,964 18,964

This table shows the effect of installing a solar panel on the net electricity
(extractions − injections) taken from the grid, using different sets of time fixed
effects. Column (1) uses ID + month fixed effects; column (2) uses ID + month
+year fixed effects; finally, column (3) uses ID + month ∗ year. Standard errors
are clustered at state level. Significance levels: ***0.01 **0.05 *0.1.

Figure A.2 plots the event study coefficients using ID + month fixed effects. All the

results are compared with the month before installing the solar panel (lead1). As Figure A.2

shows, the net effect reduction is constant over time.

In section A.5, we introduce agent heterogeneity to explore potential differences between

firms and households.

A.5 Heterogeneity by Agent

The results are presented in Table A.4. Firms that install solar panels decrease the net effect

by 3,584 kWh, and households reduce the net effect by 566 kWh.
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Table A.4: Electricity injected into the grid by type of agent: household or firm

Panel (a): Net effect (kWh) - Firms
(1) (2) (3)

Solar panel installation -3584.38*** -3822.37*** -3768.55***
(305.23) (482.84) (497.86)

ID Fixed Effects Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y
N 13,033 13,033 13,033

Panel (b): Net effect (kWh) - Households
(1) (2) (3)

Solar panel installation -566.31*** -734.09*** -752.83***
(56.72) (155.00) (172.92)

ID Fixed Effects Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y
N 5,931 5,931 5,931

This table shows the effect of installing a solar panel on the net effect, i.e.,
the difference between electricity extracted minus injected, using different sets
of time-fixed effects. Column (1) uses ID + month fixed effects; column (2)
uses ID + month +year fixed effects; finally, column (3) uses ID + month ∗
year. Standard errors are clustered at state level. Significance levels: ***0.01
**0.05 *0.1.
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Figure A.2: Event study plot - Net effect.
Notes: This figure shows the event study plot of the net effect, defined (extractions − injections)

from the grid. Using 12 leads/lags before/after the solar panel installation, controlling for ID +

month fixed effects.
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A.6 Change in the Policy

In this section, we study whether the change in the policy has an effect on our estimates for

electricity extracted from the grid - we lack the data before the policy to see the effect on

injection. We find no effect of the policy change, as shown in Table A.5

Table A.5: Effect of the change in the policy

Dependent Variable: Extraction (kWh)
Model: (1) (2) (3)
Variables
Solar Panel Installation -1,201.9∗∗∗ -1,261.4∗∗∗ -748.1∗

(202.5) (274.8) (396.6)
Solar Panel Installation*After 2017 142.1 231.5 -454.8

(312.5) (354.7) (535.0)
ID Fixed Effects Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y
Observations 24,386 24,386 24,386

This table shows the effect of installing a solar panel on the electricity taken from the grid,
using different sets of fixed effects. Column (1) uses ID + month fixed effects; column (2)
uses ID + month +year fixed effects; finally, column (3) uses ID + month ∗ year. “After
May 2017” takes the value equal to 1 if the agent installs a solar panel after May 2017.
Solar panel installation takes a value equal to 1 after installing the solar panel. Solar
panel installation ∗ After May 2017, is the interaction. Standard errors are clustered at
state level. Significance levels: ***0.01 **0.05 *0.1.
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A.7 CO2 emissions factors

As discussed in Section 5.6, the CO2 emission reduction due to the policy depends on which

electricity source is used in the margin. A way to reflect such a relation is by creating hourly

CO2 emission factors.

We create such factors as follows. First, we construct the total CO2 emissions per month

due to electricity production. To calculate this number, we collect monthly data on fuel

oil, gas oil, and natural gas consumption for thermal electricity production and then use

the IPCC (2006)’s CO2-emission factors to convert it to monthly CO2 emissions. Second,

we construct the average hourly CO2 emission factor of the month by dividing the total

CO2 against the total thermal production of the month. Lastly, we would like to reflect

that, within a month, the higher the thermal production, the more likely it is that higher

CO2-emission facilities are being used. We would also like that once we multiply the CO2-

emission factor against the thermal production and sum up over the day, the associated CO2

emissions equals the CO2 emitted in that day. Thus, we construct a ponderator within hour-

of-the-day in two steps. First, we construct a ponderator per hour equivalent to the total

thermal production at that hour divided by the total thermal production that day. Then,

we re-weight such a ponderator by the square of the sum of the total thermal production of

the day divided by the sum of the square of the total.

Mathematically, we can find such a re-weight as follows. Denote the average hourly CO2

emissions α, the hourly thermal production tdh, and the re-weight factor wd. Then,

∑
h

tdh × α =
∑
h

α× tdh ×
tdh∑
h tdh

× wd

∑
h

tdh =
wd∑
h tdh

∑
h

t2dh =⇒ wd =
(
∑

h tdh)
2∑

h t
2
dh

(12)
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A.8 Value to Consumers

Table A.6 and A.7 show the information use to calculate the back-of-the-envelope savings

using the net effect and the injection estimations for households and firms, respectively.

For households, there are three rates: peak, off-peak, and plain. Each household faces

each rate for 4 hours, 8 hours, and 12 hours, respectively (please check here). The weighted

average is calculated as 10.68 ∗ 4
24

+ 2.223 ∗ 8
24

+ 4.875 ∗ 12
24

= 4.9585. The exchange rate was

collected from here, the real exchange rate with base 2017 was obtained from here. The net

effect estimation is presented in Table A.4 Panel (b) column (1). The injection estimation

is presented in Table 5 Panel (b) column (1). Therefore, the savings assuming the weighted

average rate and the net effect estimation is 566.31∗4.9585∗0.937
38.955

= 68 USD at the 2017 base.

Table A.6: Value to consumers - Household data

Household rate
Rate (UY/MWh) Hours Weight Weighted Av.

Peak 10.68 4 hrs 4
24

Off-peak 2.223 8 hrs 8
24

4.9585
Plain 4.875 12 hrs 12

24

Exchange rate 38.955
Real exchange rate base 2017 0.937
Net effect estimation -566.31
Injection estimation 455.28

This table shows the calculations used to find the saving using the net effect estimations and the
injections estimations for households

Similarly, for firms, the data used is presented in Table A.7. Each firm also faces each rate

for 4 hours, 8 hours, and 12 hours, respectively (please check here). The weighted average

is calculated as: 11.531 ∗ 4
24

+ 2.303 ∗ 8
24

+ 5.068 ∗ 12
24

= 5.2235. While the exchange rate was

collected from here, the real exchange rate with base 2017 was obtained from here. The net

effect estimation is presented in Table A.4 Panel (a) column (1). The injection estimation

is presented in Table 5 Panel (a) column (1). Therefore, the savings assuming the weighted

average rate and the net effect estimation is 3584.3∗5.2235∗0.937
38.955

= 450 USD at the 2017 base.
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Table A.7: Value to consumers - Firms data

Firms rate
Rate (UY/MWh) Hours Weight Weighted Av.

Peak 11.531 4 hrs 4
24

Off-peak 2.303 8 hrs 8
24

5.2235
Plain 5.068 12 hrs 12

24

Exchange rate 38.955
Real exchange rate base 2017 0.937
Net effect estimation -3584.3
Injection estimation 2135.82

This table shows the calculations used to find the saving using the net effect estimations and the
injections estimations for firms
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A.9 Robustness Checks

A.9.1 Alternative Cluster

In this section, we run the main regressions cluster at an ID level. Results do not vary and

can be found in Table A.8.

Table A.8: Cluster errors at an ID level

Dependent Variable: Net Effect (kWh)
Variables
Solar Panel Installation -2,565.0∗∗∗ -2,839.1∗∗∗ -2,830.7∗∗∗

(227.6) (279.2) (286.6)
Observations 18,964 18,964 18,964

Dependent Variable: Injection (kWh)
Variables
Solar Panel Installation 1,569.7∗∗∗ 1,708.8∗∗∗ 1,697.8∗∗∗

(98.36) (113.6) (114.5)
Observations 24,386 24,386 24,386

Dependent Variable: Injection (kWh)
Model: (1) (2) (3)
Variables
Solar Panel Installation 1,569.7∗∗∗ 1,708.8∗∗∗ 1,697.8∗∗∗

(98.36) (113.6) (114.5)
Observations 18,964 18,964 18,964

ID F.E Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y

This table shows the effect of installing a solar panel on the net electricity
using different sets of fixed effects. Column (1) uses ID + month fixed
effects; column (2) uses ID + month +year fixed effects; finally, column
(3) uses ID + month ∗ year. Standard errors are clustered at ID level.
Significance levels: ***0.01 **0.05 *0.1.
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Table A.9: Excluding agents with yearly injection greater than yearly extraction

Dependent Variable: Net Effect (kWh)
Model: (1) (2) (3)
Variables
Solar Panel Installation -2,476.8∗∗∗ -2,772.6∗∗∗ -2,758.0∗∗∗

(293.9) (398.0) (397.8)
Observations 16,441 16,441 16,441

Dependent Variable: Extraction (kWh)
Variables
Solar Panel Installation -1,140.8∗∗∗ -1,102.9∗∗∗ -1,120.5∗∗∗

(81.02) (149.2) (142.5)
Observations 21,744 21,744 21,744

Dependent Variable: Injection (kWh)
Variables
Solar Panel Installation 1,438.0∗∗∗ 1,606.5∗∗∗ 1,595.4∗∗∗

(116.2) (132.7) (129.1)
Observations 16,441 16,441 16,441

ID F.E Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y

This table shows the effect of installing a solar panel on the net electricity
(extractions − injections) taken from the grid, using different sets of fixed
effects. Column (1) uses ID + month fixed effects; column (2) uses ID
+ month +year fixed effects; finally, column (3) uses ID + month∗ year.
Standard errors are clustered at state level. Significance levels: ***0.01
**0.05 *0.1.

A.9.2 Exclude Agents with Injection Greater than Extraction

In 2017, the net-metering policy changed slightly. From that point onward, agents shall not

produce more electricity yearly than the one they produce. In practice, only 137 agents

produce more electricity than they consume in a year. We exclude them from the main

regressions; the results virtually do not change. A summary of the results can be found in

Table A.9.
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Table A.10: Excluding 5% tails on electricity extracted from the grid

Dependent Variable: Net Effect (kWh)
Model: (1) (2) (3)
Variables
Solar Panel Installation -2,295.6∗∗∗ -2,391.4∗∗∗ -2,375.5∗∗∗

(174.1) (270.2) (236.1)
Observations 17,648 17,648 17,648

Dependent Variable: Extraction (kWh)
Variables
Solar Panel Installation -918.3∗∗∗ -810.7∗∗∗ -836.6∗∗∗

(67.99) (147.6) (147.3)
Observations 22,278 22,278 22,278

Dependent Variable: Injection (kWh)
Variables
Solar Panel Installation 1,480.3∗∗∗ 1,602.7∗∗∗ 1,596.0∗∗∗

(104.4) (116.8) (105.4)
Observations 17,648 17,648 17,648

ID F.E Y Y Y
month Y Y N
year N Y N
month ∗ year N N Y

This table shows the effect of installing a solar panel on the net electricity
(extractions − injections) taken from the grid, using different sets of fixed
effects. Column (1) uses ID + month fixed effects; column (2) uses ID
+ month +year fixed effects; finally, column (3) uses ID + month∗ year.
Standard errors are clustered at state level. Significance levels: ***0.01
**0.05 *0.1.

A.9.3 Exclude Tails of Agents’ Extraction from the Grid

Our results may also be driven by agents with very high or low electricity extraction from

the grid. We exclude the 5% with the highest and lowest total electricity extraction from

the grid to check whether this is true. The results do not change qualitatively. A summary

of the results can be found in Table A.10.
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A.9.4 Sun and Abraham (2021) Estimation Approach

In this section, we present the estimation results using the Sun and Abraham (2021) ap-

proach. The results are unchanged and presented in Table A.11.

Table A.11: Sun and Abraham (2021) estimation approach

Net effect (kWh) Extraction (kWh) Injections (kWh)
Solar panel installation -2488.46*** -891.69*** 1532.81***

(298.47) (169.31) (90.39)
ID F.E Y Y Y
Month F.E Y Y Y
N 18,963 24,386 18,963

This table shows the effect of installing a solar panel on the electricity taken from the grid
using ID + month fixed effect. Column (1) shows the net effect, i.e, the electricity extracted
− injected into the grid; column (2) shows the electricity taken from the grid; finally, column
(3) shows the electricity injected into the grid. Standard errors are clustered at state level.
Significance levels: ***0.01 **0.05 *0.1.
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